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Introduction

Benzimidazoles are heterocyclic compounds having various 
biological activities, among which albendazole, meben-
dazole, and thiabendazole are widely used antihelmintic 
drugs1. Furthermore, benzimidazole compounds are also 
reported to possess biological activities such as inhibition of 
the angiopoietin receptor TIE-2 and tyrosine kinase receptor 
VEGFR-2 (vascular endothelial growth factor receptor-2)2, 
antitumor activity3, thrombopoietin receptor agonistic 
activity4, -aminobutyric acid (GABA) agonistic acti- 
vity5, antibacterial activity6, antiprotozoal7 and antimicrobial 
activity8, topoisomerase inhibition9, neuropeptide Y1 recep-
tor antagonistic activity10, and inhibition of angiotensin II11. 
Recently, benzimidazole derivatives have been found to 
be active on several targets useful for the development of 

antidiabetic therapeutics, e.g. inhibitors of dipeptidyl pepti-
dase IV12 and activators of peroxisome proliferator-activated 
receptor- (PPAR-)13,14.

In the course of our study to find -glucosidase inhibitors 
from various sources, we observed benzimidazoles to be 
potent inhibitors of yeast as well as intestinal -glucosidase. 
Intestinal -glucosidase inhibitors have become an impor-
tant therapeutic tool in mitigation of postprandial hyper-
glycemia (PPHG). PPHG has emerged as a prominent 
and early defect in type 2 diabetes15 and as a predictor of 
cardiovascular or even all-cause mortality, as well as an 
independent risk factor for atherosclerosis16. Several epi-
demiological studies have observed that subjects with type 
2 diabetes have an increased risk for the development of 
colorectal cancer17.
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Abstract
Glycosidases play an important role in a wide range of physiological and pathological conditions, and have 
become potential targets for the discovery and development of agents useful for the treatment of diseases 
such as diabetes, cancer, influenza, and even AIDS. In this study, several benzimidazole derivatives were pre-
pared from o-phenylenediamine and aromatic and heteroaromatic carboxaldehydes in very good yields, using 
PdCl2(CH3CN)2 as the most efficient catalyst. Synthesized compounds were assayed for their activity on yeast and 
rat intestinal α-glucosidase inhibition and cytotoxic activity against colon carcinoma cell line HT-29. Compound 
3e exhibited 95.6% and 75.3% inhibition of yeast and rat intestinal α-glucosidase enzyme, while showing 74.8% 
cytotoxic activity against the HT-29 cell line at primary screening concentrations of 2.1 mM for yeast and rat intes-
tinal α-glucosidase enzyme and 0.2 mM for cytotoxic activity against the HT-29 cell line, respectively. Compound 
3c displayed 76% and 34.4% inhibition of yeast and rat intestinal α-glucosidase enzyme, and 80.4% cytotoxic 
activity against the HT-29 cell line at similar primary screening concentrations. The IC50 value for the most potent 
intestinal α-glucosidase inhibitor compound 3e was found to be 99.4 µM. The IC50 values for the most active 
cytotoxic compounds 3c and 3e were 82 µM and 98.8 µM, respectively. Both compounds displayed significant 
antihyperglycemic activity in starch-induced postprandial hyperglycemia in rats. This is the first report assigning 
yeast and rat intestinal α-glucosidase enzyme inhibition, cytotoxic activity against the HT-29 cell line, and antihy-
perglycemic activity to benzimidazole compounds 3c and 3e.
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Therefore, the search for agents that mitigate post-
prandial hyperglycemia and possess cytotoxic activity 
against colon cancer cell lines may offer an opportunity 
for the development of novel therapeutics for diabetic 
patients. In this communication we report the synthesis 
of various benzimidazoles 3a–h by the condensation of o-
phenylenediamines (1a–h) with aromatic and heteroaro-
matic carbonyl compounds (2a–h) in the presence of a 
catalytic amount of PdCl

2
(CH

3
CN)

2
 in dry MeOH at room 

temperature. Compounds 3a–h were evaluated for their 
in vitro -glucosidase inhibitory activity and cytotoxic 
activity on colon carcinoma line HT-29, as well as anti-
hyperglycemic property in starch-induced postprandial 
hyperglycemia in rats.

Experimental

Chemistry
1H nuclear magnetic resonance (NMR) and 13C NMR spectra 
were recorded on a Varian Gemini 200 MHz and an Avance 
300 MHz spectrometer in CDCl

3
 and DMSO-d

6
 using tetram-

ethylsilane (TMS) as internal standard. All chemical shifts 
are reported as  (ppm) values. Infrared (IR) spectra were 
recorded on a Nicollet 740 Fourier transform (FTIR) spec-
trometer. Mass spectra were obtained on an Agilent liquid 
chromatography (LCMS) instrument. Melting points were 
determined in open glass capillary tubes on a Metler FP 51 
apparatus and are uncorrected. All reactions were monitored 
by thin layer chromatography (TLC) on pre-coated silica gel 
60 F

254
 (mesh); spots were visualized under ultraviolet (UV) 

light. Merck silica gel (60–120; 100–200 mesh) was used 
for chromatography. All reactions were carried out using 
reagent-grade solvents, and the reagents were purchased 
from Sigma-Aldrich.

General procedure for the preparation of benzimidazoles 
3a–h
To a stirred solution of o-phenylenediamine (1a, 1 mmol) 
and catalyst PdCl

2
(CH

3
CN)

2
 (20 mol%) in anhydrous 

methanol (5 mL) was added a solution of carbonyl com-
pound (2a, 1 mmol) under a nitrogen atmosphere over 
a period of 5 min at room temperature, and the contents 
were stirred at the same temperature for 4 h. After comple-
tion of the reaction (TLC), the solvent was removed under 
reduced pressure, and the crude product was subjected to 
column chromatography purification to afford 2-(2-chloro-
5-methyl-3-pyridyl)-1H-benzo[d]imidazole 3a as solid in 
82% yield. Mp: 213–215°C; IR (KBr): 3443, 2922, 1569, 1436, 
1071,  889 cm−1; 1H NMR (CDCl

3
, 300 MHz):  2.42 (s, 3H, 

CH
3
), 7.24–7.36 (m, 2H, aromatic), 7.62–7.72 (m, 2H, aro-

matic), 8.28 (s, 1H, heteroaromatic), 8.72 (s, 1H, heteroaro-
matic); 13C NMR (CDCl

3
, 75 MHz):  22.14, 120.71, 127.86, 

130.93, 138.26, 143.92, 146.50, 150.31, 152.62, 155.82; LCMS: 
[M+ + 1] 243, 245.

Compounds 3b-h were synthesized similarly.
2-(2-chloro-5-methyl-3-pyridyl)-6-nitro-1H-benzo[d]imida-
zole.  3b  68% Yield; solid; Mp: 261–263°C; IR (KBr): 3363, 

2924, 1619, 1439, 1339, 1189, 1064,  947 cm−1; 1H NMR (CDCl
3
 

+ DMSO-d
6
, 300 MHz):  2.42 (s, 3H, CH

3
), 7.78 (d, J = 10 Hz, 

1H, aromatic), 8.22 (d, 1H, heteroaromatic), 8.32 (s, 1H, aro-
matic), 8.38 (s, 1H, heteroaromatic), 8.66 (s, 1H, heteroaro-
matic); LCMS: [M+ – 1] 287, 289.
4 - ( 6 - m e t h y l - 1 H - b e n z o [ d ] i m i d a z o l - 2 - y l ) - 1 , 3 -
benzenediol.  3c  78% Yield; solid; Mp: 248–249°C; IR 
(KBr): 3559, 3356, 2922, 1740, 1616, 1494, 1426, 1250, 
1040,  970 cm−1; 1H NMR (CDCl

3
 + DMSO-d

6
), 300 MHz): 

 2.42 (s, 3H, CH
3
), 6.40 (d, J = 8 Hz, 1H, aromatic), 6.50 

(s, 1H, aromatic), 6.98 (s, 1H, aromatic), 7.30 (s, 1H, aro-
matic), 7.38 (d, J = 12 Hz, 1H, aromatic), 7.62 (d, J = 12 Hz, 
1H, aromatic); 13C NMR (CDCl

3
 + DMSO-d

6
; 75 MHz): 

 21.19, 103.00, 104.55, 107.45, 123.69, 127.24, 131.62, 
152.04, 159.78, 160.62; LCMS: [M+ – 1] 239.
6-Nitro-2-(3-pyridyl)-1H-benzo[d]imidazole.  3d  64% 
Yield; solid; Mp: 242–244°C; 1H NMR (CDCl

3
, 300 MHz): 

 7.42–7.54 (m, 1H, aromatic), 7.70 (d, J = 8 Hz, 1H, heter-
oaromatic), 8.18 (d, J = 10 Hz, 1H, heteroaromatic), 8.52–8.58 
(m, 2H, heteroaromatic), 8.78 (s, 1H, aromatic), 9.46 (s, 1H, 
heteroaromatic). LCMS: [M+ + 1] 240.
6-Nitro-2-(4-pyridyl)-1H-benzo[d]imidazole.  3e  62% 
Yield; solid; Mp: 224–226°C; 1H NMR (CDCl

3
, 300 MHz): 

 7.26 (s, 1H, aromatic), 7.44–7.52 (m, 1H, aromatic), 7.74 
(brs, 1H, NH), 7.92–8.02 (m, 1H, aromatic), 8.26 (d, J = 10 Hz, 
1H, heteroaromatic), 8.54 (d, 1H, heteroaromatic), 8.68 (d, 
J = 8 Hz, 2H, heteroaromatic); LCMS: [M+ + 1] 241.
6-Methyl-2-(3-pyridyl)-1H-benzo[d]imidazole.  3f  76% 
Yield; solid; Mp: 244–246°C; IR (KBr): 3448, 3006, 2917, 
1736, 1574, 1448, 1425, 1314, 1274, 1186,  962 cm−1; 1H NMR 
(CDCl

3
, 300 MHz):  2.46 (s, 3H, CH

3
), 6.98 (d, J = 10 Hz, 1H, 

aromatic), 7.28–7.52 (m, 3H, aromatic + heteroaromatic), 
8.48 (d,d, J = 10 Hz, 1H, heteroaromatic), 8.66 (d,d, J = 8 Hz, 
1H, aromatic), 9.34 (d, J = 8 Hz, 1H, heteroaromatic); 13C 
NMR (CDCl

3
 + DMSO-d6; 75 MHz):  21.26, 123.93, 126.24, 

131.76, 133.56, 147.35, 148.45, 150.25; LCMS: [M+ + 1] 210.
6-Methyl-2-(4-pyridyl)-1H-benzo[d]imidazole.  3g  68% 
Yield; solid; Mp: 218–219°C; IR (KBr): 3448, 3038, 1683, 
1606, 1483, 1373, 1235, 1000,  960 cm−1; 1H NMR (CDCl

3
, 

300 MHz):  2.50, (s, 3H, CH
3
), 7.04 (d, J = 8 Hz, 1H, aromatic), 

7.42 (s, 1H, aromatic), 7.58 (d, J = 8 Hz, 1H, aromatic), 8.04 
(d, J = 10 Hz, 2H, heteroaromatic), 8.70 (d, J = 8 Hz, 2H, het-
eroaromatic); LCMS: [M+ + 1] 210.
6-Nitro-2-(2-pyridyl)-1-(2-pyridylmethyl)-1H-benzo[d]imi-
dazole.  3h  64% Yield; solid; Mp: 173–175°C; IR (KBr): 
3424, 3060, 1587, 1510, 1466, 1436, 1337, 1150,  992 cm−1; 
1H NMR (CDCl

3
, 300 MHz):  6.34 (s, 2H, CH

2
), 7.06 (d, 

J = 10 Hz, 1H, aromatic), 7.14–7.22 (m, 1H, aromatic), 
7.37–7.43 (m, 1H, heteroaromatic), 7.53–7.58 (m, 1H, 
heteroaromatic), 7.86–7.93 (m, 2H, heteroaromatic), 8.24 
(d,d, J = 12 Hz, 1H, heteroaromatic), 8.44 (s, 1H, aromatic), 
8.50 (d, J = 12 Hz, 1H, heteroaromatic), 8.58 (d, J = 6 Hz, 1H, 
heteroaromatic), 8.65 (d, J = 6 Hz, 1H, heteroaromatic); 13C 
NMR (CDCl

3
, 75 MHz):  51.49, 108.13, 119.27, 120.09, 

121.19, 122.73, 125.14, 125.20, 136.39, 136.92, 137.19, 
146.96, 148.80, 148.89, 149.44, 149.60, 154.20, 156.27; 
LCMS: [M+ + 1] 332.
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Biological evaluation

Chemicals
Yeast -glucosidase and rat intestinal acetone powder as 
a source of intestinal -glucosidae, p-nitrophenyl -d-
glucopyranoside (pNPG), soluble potato starch, DMEM 
(Dulbecco’s modified Eagle’s medium), MTT (3-(4, 
5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), 
trypsin, and EDTA (ethylenediaminetetraacetic acid) were 
purchased from Sigma Chemical Co., St. Louis, MO, USA. 
Fetal bovine serum (FBS) was purchased from Gibco. Other 
chemicals of analytical grade were procured from indig-
enous manufacturers. The HT-29 (colon cancer) cell line was 
obtained from the National Center for Cell Science (NCCS), 
Pune, India.

In vitro -glucosidase inhibitory assay
-Glucosidase inhibitory activities were determined as 
per earlier reported methods18,19. Rat intestinal acetone 
powder in normal saline (100: 1; w/v) was sonicated 
thoroughly and the supernatant was used as a source of 
crude intestinal -glucosidase after centrifugation. In 
brief, 10 L of test sample ( 5 mg/mL DMSO solution) was 
reconstituted in 100 L of 100 mM phosphate buffer (pH 
6.8) in a 96-well microplate and incubated with 50 L of 
crude intestinal -glucosidase for 5 min before 50 L sub-
strate (5 mM pNPG prepared in same buffer) was added. 
Release of p-nitrophenol was measured at 405 nm spectro-
photometrically (SpectraMax Plus384; Molecular Devices 
Corp., Sunnyvale, CA, USA) 5 min after incubation with 
substrate. Individual blanks for test samples were pre-
pared to correct background absorbance where substrate 
was replaced with 50 L of buffer. The control sample 
contained 10 L of dimethylsulfoxide (DMSO) in place of 

test sample. The percentage of enzyme inhibition was cal-
culated as (1 – B/A) × 100 where A represents the absorb-
ance of control without test sample, and B represents the 
absorbance in the presence of test sample. The IC

50
 values 

were determined by applying logarithmic regression anal-
ysis to the data for at least five concentration dilutions of 
the compound.

In vitro assay for cytotoxic activity
HT-29 (colon cancer) cells were plated at a density of 1 × 103 
cells per well in 100 µL of DMEM supplemented with 10% 
FBS medium in a 96-well plate and grown for 24 h. The cells 
were then exposed to a series of concentrations of test com-
pounds for 24 h and the viability of cells was measured with 
the MTT method as reported earlier20. Briefly, the above 
media were replaced with 90 µL of fresh serum-free DMEM 
and 10 µL of MTT reagent ( 5 mg/mL) and plates were 
incubated at 37°C for 4 h; thereafter the above media were 
replaced with 200 µL of DMSO and incubated for 15 min. 
The absorbance at 570 nm was measured on a spectropho-
tometer (SpectraMax; Molecular Devices). The values for 
each point were calculated from triplicate wells. IC

50
 values 

were determined applying logarithmic regression analysis 
to the data for at least three dilutions.

Animal experiment
The study of antihyperglycemic activity was done according 
to a method reported earlier21. Male Wistar rats weighing 
between 195 and 215 g were obtained from the National 
Institute of Nutrition (CPCSEA Reg. No. 154, Government 
of India), Hyderabad. The animals were housed in standard 
polyvinyl cages. The room temperature was maintained at 
22 ± 1°C with an alternating 12 h light/dark cycle. Food and  
water were provided ad libitum. Experiments were 
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Scheme 1.  Reaction route for the synthesis of benzimidazoles and their structures.
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performed as per the Institutional Animal Ethics Committee 
norms. The rats were divided into three groups, viz. control, 
and 3c and 3e groups, containing six rats in each group. 
All animals were subjected to overnight fasting. The next 
day, forenoon blood was collected from the retro-orbital 
plexus in EDTA-containing tubes, and basal (0 h) plasma 
glucose levels were measured by the glucose-oxidase test 
method using a blood autoanalysis instrument (Bayer 
Express Plus). Test compounds were suspended in normal 
saline and administered orally in a dose of  50 mg/kg body 
weight. The control group of animals was given only normal 
saline. Fifteen minutes after test sample treatment, animals 
were fed with soluble starch dissolved in normal saline at a 
dose of 2 g/kg body weight. Thereafter, blood was collected 
at intervals of 30, 60, 90, and 120 min post-starch feeding. 
Plasma was separated out for glucose measurement as 
described above.

Results and discussion

Chemistry
Due to the importance of benzimidazoles, a few methods 
have been reported in the literature, which include reaction 
of o-aryldiamines with carboxylic acids or their derivatives 
under strong acidic conditions at high temperatures22,23. 
Cyclodehydration of o-aryldiamines with aldehydes in the 
presence of oxidative reagents is another method to syn-
thesize benzimidazoles24. Single electron transformation 
(SET) reactions of 2-nitroaniline with benzaldehyde in the 
presence of indium/BNP25 as well as the reductive cycliza-
tion of 2-nitroaniline in the presence of Na

2
S

2
O

4
 are also 

reported for the synthesis of benzimidazoles. However, all 
of these methods have drawbacks in terms of using expen-
sive reagents, oxidation processes, severe conditions, long 
reaction times, and tedious work-up procedures. It is also 

Table 1.  Synthesis of benzimidazoles.

Entry Diamines (1) Carbonyl Compounds (2) Product (3) Yield (%)*

a

b

c

d

e

f

g

h

82

68

78

64

62

76

68

64

NH2

NH2

NH2

NH2

NH2

NH2

NH2

NH2

NH2

NH2
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H
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N
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H

N
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H

N
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H
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H
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H
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H
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*Isolated and unoptimized yields; compounds were characterized by spectral data.Biological activity.



84    Jaladi Ashok Kumar et al.

known that catalysts based on palladium are very impor-
tant in organic synthesis, particularly in the total synthesis 
of natural products for carbon–carbon bond formation26. 
PdCl

2
(CH

3
CN)

2
 is considered an important catalyst among 

all palladium catalysts. We carried out the synthesis of ben-
zimidazoles by the condensation of o-phenylenediamine 
and substituted o-phenylenediamines (1a–h, 1 mmol) with 
aryl and heteroaryl carbonyl compounds (2a–h, 1 mmol) 
in the presence of a catalytic amount of PdCl

2
(CH

3
CN)

2
 in 

anhydrous methanol at room temperature27. The mode of 
reaction is the formation of a Schiff base (1H NMR,  8.45 
singlet, 1H), followed by intramolecular cyclization resulting 
in benzimidazoles (3a–h; Scheme 1 and Table 1) in 62–82% 
yield. Compounds such as 2-(2-chloro-5-methyl-3-pyridyl)-
1H-benzo[d]imidazole (3a) and 2-(2-chloro-5-methyl-3-
pyridyl)-6-nitro-1H-benzo[d]imidazole (3b) were prepared 
by the condensation of o-phenylenediamine (1a) and nitro 
o-phenylenediamine (1b) with 2-chloro-5-methylpyridine-
3-carboxaldehyde (2a) in very good yields. The compound 
2-chloro-5-methylpyridine-3-carboxaldehyde (2a) was 
prepared by the Vilsmeier reaction of an enamide as per 
our earlier reported method28. 6-Nitro-2-(2-pyridyl)-1-(2-
pyridylmethyl)-1H-benzo[d]imidazole (3h) was prepared 
by the condensation of nitro o-phenylenediamine (1b) with 
2 mol of 2-pyridinecarboxaldehyde (2h). The synthesized 
compounds were characterized by spectral data (1H NMR, 
IR, and MS).

Inhibition of glycosidases has recently become important 
not only due to their interesting role in delineating enzyme 
mechanisms and the control of postprandial hyperglycemic 
excursion in diabetes mellitus, but also in development 
of newer therapeutics targeted at, for example, cancer, 
viral infections including human immunodeficiency virus 
(HIV) and influenza, and lysosomal storage diseases, with 
a number of drugs in current clinical use29. All the com-
pounds were tested in vitro first, for -glucosidase inhibi-
tory activity. Compounds were screened using two models 
of -glucosidase enzyme sources: one from yeast that repre-
sents -glucosidase type-I30 that has been extensively used 
as a model for screening potential inhibitors against viral 
diseases and cancer31, and another from rat intestine that 
represents -glucosidase type-II30 that serves as a potential 
target for screening compounds that may be developed as 
antihyperglycemic agents against carbohydrate-induced 
postprandial hyperglycemic excursion32. It is evident from 
Figure 1A that compounds 3c, 3e, and 3g displayed potent 
inhibitory activity for yeast -glucosidase.

Despite the fact that amino acid sequences in the catalytic 
site of the -glucosidase family are highly conserved, the 
aglycon specificity is different33. It has been advised, there-
fore, to use enzymes of target tissues or organs for screening 
of agents for viral diseases, cancer, or diabetes34. Excessive 
intake of a high-calorie, quickly digestible high-carbohydrate 
diet results in abnormal surges in the blood glucose level, 
referred to as PPGH35. Slowing the digestion and absorption of 
digestible dietary carbohydrates by intestinal -glucosidase 
inhibitors in particular, which reduce the rate of enzymatic 

digestion of starch and delay the release of glucose molecules 
for absorption, has shown promise in reducing PPHG, hyper-
insulinemia, and unwanted consequences on pancreatic 
function along with the development of hemodynamic dis-
turbances36–37. When compounds under study were screened 
for their rat intestinal -glucosidase inhibitory activity, only 
3e could display strong inhibitory potential for enzyme inhi-
bition also (Figure 1B, IC

50
 = 99.4 M).

Evaluation of the cytotoxic activity of these compounds 
was done on colon caner cell line HT-29. It was observed that 
at a primary screening concentration of 0.2 M, compounds 
3c and 3e displayed 80.4% and 74.8% cytotoxic activity 
(Figure 1C). The IC

50
 values for compounds 3c and 3e were 

calculated to be 82 M and 98.75 M, respectively.
Because compounds 3c and 3e possessed both 

-glucosidase inhibitory as well as cytotoxic activity, they 
were selected for evaluation of antihyperglycemic activity 
in vivo on starch-induced hyperglycemia in rats. Both com-
pounds significantly reduced starch-induced postprandial 
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Figure 1.  Percentage of activity of benzimidazole derivatives on various 
targets. The primary concentration at which compounds were screened 
was 500 µg/mL for yeast [A] and intestinal [B] -glucosidase inhibition 
assay, and 50 µg/mL for cytotoxic activity [C]. Data represent mean ± 
SD, n = 3.
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hyperglycemic excursion in rats (Figure 2), 3e being slightly 
(insignificantly) superior to 3c.

Conclusion

Synthesis of benzimidazole compounds 3a–h was achieved 
by the condensation of aromatic and heteroaromatic 
aldehydes with o-phenylenediamine and substituted o-
phenylenediamine in the presence of PdCl

2
(CH

3
CN)

2
 with 

very good yields. Compounds 3c, 3e, and 3g exhibited potent 
inhibition of yeast -glucosidase enzyme. However, only 3e 
could display potent intestinal -glucosidase enzyme inhi-
bition. Compounds 3c and 3e displayed cytotoxic potential 
also against colon cancer cell line HT-29. Furthermore, both 
compounds (3c and 3e) displayed significant antihyperglyc-
emic activity in starch-induced postprandial hyperglycemia 
in rats. These compounds, therefore, open new avenues for 
the development of antihyperglycemic anticancer thera-
peutics targeted toward the treatment of type 2 diabetes.
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